FOR EACH PROBLEM, CLEARLY INDICATE THE ANSWER **AS WELL AS THE CALCULATIONS** WHICH GENERATE THE ANSWER. YOU MAY ATTACH ADDITIONAL PAGE(S) IF NECESSARY, BUT **THE ANSWER MUST BE ON THIS SHEET**. PLEASE READ THE TEXT AND TABLES CAREFULLY. LIKE OTHER TAKE-HOME ITEMS, THIS IS NOT TO BE WORKED ON TOGETHER IN LAB! TURN THIS IN AT THE START OF LAB NEXT WEEK. YOU CAN SUBMIT THIS PROBLEM SET IN THE **102 DROP BOX** – THE FIRST TOP LOCKER JUST OUTSIDE THE FRONT LAB DOOR.

1. You added **10** ml of a lake water sample to **90** ml of sterile diluent; this is the "<u>first dilution</u>" indicated in the table below.

After mixing thoroughly, **1** ml of this dilution was added to **9** ml of sterile diluent to make the <u>second dilution</u>. To make the <u>third dilution</u>, **0.1** ml of the second dilution was added to **9.9** ml of sterile diluent. From **each** of these three dilutions, 10 ml, 1 ml or 0.1 ml amounts were inoculated into **duplicate** pour-plates of Plate Count Agar (PCA) as shown in the table below.

After appropriate incubation, colonies were counted. (TNTC = too numerous to count.)

dilution of lake water	first dilution		second dilution		third dilution	
Amount inoculated into each of duplicate plates of PCA:	10 ml	1 ml	1 ml	0.1 ml	1 ml	0.1 ml
For convenience, you can indicate the "plated dilution" or "dilution factor" here:						
Colony count on PCA plates:	TNTC	TNTC	212, 208	23, 15	4, 2	0,0

a. (3 points) What was the "total aerobic plate count" (in CFUs per ml) of the original, undiluted sample of water? (Be sure you indicate just one answer rather than a separate answer for each plate counted.)

b. (1 point) Ten ml of the first dilution is equivalent to _____ ml of the original, undiluted sample of water.

2. (1 point) **Ten ml** of spring water were added to a petri dish to which 20 ml of melted Plate Plate Count Agar were added. After incubation, 250 colonies arose on the plate. What was the count of CFUs **per one ml** of the spring water?

3.	this inoc med	oints) One ml of sauerkraut juice was pipetted into a 99 ml dilution blank. One-tenth ml of dilution was pipetted into a 9.9 ml dilution blank. From this dilution, one-tenth ml was culated into a sterile petri dish to which an appropriate amount of an all-purpose agar lium was added. After incubation, 240 colonies were counted. How many colony-forming s (CFUs) were present per ml of the sauerkraut sample?
4.	(2 p	oints) The same dilution can be obtained for all of the following situations:
	a.	The addition of 1 ml of a sample to 9 ml of sterile diluent.
	b.	The addition of ml of the same sample to 18 ml of diluent.
	c.	The addition of 11 ml of the same sample to ml of diluent.